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THE NUMERICAL SOLUTION OF THE LAMINAR FLOW IN 
A CONSTRICTED CHANNEL AT MODERATELY HIGH 

REYNOLDS NUMBER USING NEWTON ITERATION 

ROLAND HUNT 
Department of Mathematics, University of Strathclyde, Glasgow, U . K .  

SUMMARY 
The numerical solution of the flow in a stepped channel constricted to half its width has been obtained for 
Reynolds numbers up to 2000 using Newton's iteration to solve the ensuing algebraic system. In order to 
avoid high-frequency errors, a locally fine grid is effected near the corner by transformation of the 
independent variables. The results predict a downstream recirculation region, observed in experiments but 
not found in earlier numerical calculations. The inclusion of the Dennis-Hudson upwinding, added for 
stability in SOR methods, whilst giving the same characteristics of the flow, is less accurate by at least an 
order of magnitude. 
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INTRODUCTION 

The numerical solution of the flow in a constricted stepped channel (Figure 1 (i)) was originally 
performed by Dennis and Smith using a uniform grid.' They, however, did not find a downstream 
recirculation region caused by the flow separating at the corner, observed experimentally (private 
communication), although there is a hint of its existence on their finest grids when the Reynolds 
number is larger than 1000. In this paper we use a non-uniform grid which is capable of resolving 
this region by using a locally fine mesh. For accuracy reasons it is also necessary to have a locally 
fine mesh near the corner since this is a re-entrant angle which gives rise to a singularity in the 
vorticity. A second reason for this study is to test how the Dennis-Hudson artificial viscosity,* 
used by Dennis and Smith,' affects accuracy. 

The algebraic system of equations resulting from differencing the governing streamfunction/ 
vorticity equations can be solved iteratively using the Gauss-Seidel method (or, if overrelaxation 
is incorporated, the SOR method). For such a method to converge it is required that the ensuring 
Jacobian matrix is diagonally dominant. However, at  large Reynolds number this often is not the 
case and, in order to maintain diagonal dominance, an artificial viscosity is added. This artificial 
viscosity, known as upwinding, should be applied in such a way that the overall accuracy of the 
numerical solution is maintained. The upwind difference scheme of Dennis and Hudson is 
particularly attractive, since not only is second-order accuracy of the equations maintained, but 
the artificial viscosity is applied differentially at  each grid point. That is, the amount of viscosity 
applied is the minimum that is required locally. However, if h is a typical grid spacing and Re is 
the Reynolds number, second-order accuracy is only strictly maintained if hRe 6 1, whereas the 
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Figure 1. (i) Geometry of the stepped channel showing parabolic inflow and outflow. Only the upper half is shown since 
the channel is symmetrical about AB. (ii) Uniform grid in (t, q )  co-ordinates showing the fictitious nodes as solid circles. 

(iii) The 13-point molecule which is employed at each interior node 

Dennis-Hudson scheme is often used to solve flows in which hRe % 1. For this reason there is 
some doubt as to the reliability and accuracy of the results when the Reynolds number is large. 

Such iterative methods have been used in the past because computer time and storage 
requirements of, for example, Newton’s method with its huge Jacobian matrix were greatly in 
excess of that provided by the computers of the day. However, with modern computers with faster 
central processing and enhanced storage capabilities, the direct inversion of the Jacobian 
becomes possible, particularly if parallel processing is available. For example, Fornberg has 
solved the fluid flow past a cylinder using Newton’s method by exploiting the vector capabilities 
of a Cyber 205.3 Since we can solve a fluid problem using a method which does not need artificial 
viscosity, it is possible to compare the results with and without artificial viscosity and hence to 
assess the effect that upwinding has on the solution. In a recent paper, Bramley and Sloan have 
made comparison between the results obtained with and without artificial viscosity for three tests 
problems which have a known analytical s ~ l u t i o n . ~  On their finest grid (80 x 80), typical errors in 
both streamfunction and vorticity when artificial viscosity was excluded were in the range 
10-6-10- ’. However, when upwinding was included these errors increased by three or four 
orders of magnitude and, furthermore, did not decrease as the grid spacing became finer, as one 
would anticipate for a second-order method. The problems considered by Bramley and Sloan 
were artificial in the sense that they did not represent any real flow. However, the problem 
considered here is a real flow. 

TRANSFORMATION OF THE EQUATIONS AND NUMERICAL TECHNIQUE 

Governing equations 

The boundary of the flow is shown in Figure 1 (i), with co-ordinates x along the channel in the 
downstream direction, y perpendicular to it and with no dependence on the third dimension. 
Upstream the channel lies between the planes y = & 1 and is constricted at x = 0 to lie between 
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the planes y = +f. Upstream we suppose that parabolic Poiseuille flow prevails and that far 
enough downstream the flow will again be parabolic. Owing to the symmetry of the flow about 
y = 0, it is only necessary to seek a solution for y 2 0. 

The Navier-Stokes equations in the streamfunction/vorticity formulation are 

where V2 is the Laplacian operator and $ and C are the streamfunction and vorticity respectively. 
These are related to the velocity components (u, v )  in the (x, y )  directions via 

The boundary conditions are 

- 0  on y =  l ,x<O and y = i , x > O ,  a* * = l ,  -- 
aY 

- 0  on x = O , + < y < l ,  (3) 
a* ll/=l, -- ax 

az  * 
a Y z  

l l /=O, - = 0  o n y = O .  

The conditions on y = O  preserve the symmetry of the flow and the other conditions reflect the 
no-slip condition. 

Transformation of the equations 

Anticipating the need for a finer grid at the corner, we make the transformations 

x =f (51, Y = d l l ) ,  
which give equations (1) as 

where 

a 2  a 2  1 a 2  y a 1 a 2  g” a v ,=-+  
ax2 ay2 (j-y a p  (173 at ( g y  all, (973 all* (6) 

In the 5-q plane a uniform grid is placed over the domain (see Figure l(ii)), with an N ,  x M, 
grid before the corner and an N, x M, after, and we choose M, = M,/2. The grid vertices are 
labelled ( i , j ) ,  i = - N , , - N , + l ,  . . . ,  N , ,  j = O ,  l , . .  ., M ,  where M = M ,  for i < O  and 
M = M, for i =- 0. Each element of the grid is square with dimension h = l /Ml.  The 
transformations used in the computations are 

where Axo and Ayo are the dimensions of a cell in the x-y plane next to the corner and k is a 
parameter determined by the position of the upstream boundary. With this transformation the 
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boundary conditions for equations (5 )  are the same as (3 )  if x and y are replaced by 5 and q 
respectively. 

It was found by numerical experimentation that, for the values of Re of interest 
(125 < Re<2000), Ax, has to be small otherwise the solutions are contaminated by high- 
frequency oscillatory modes. Demanding that the vorticity should be free of such modes, it was 
found that, for the finest grid used, Ax,  = 000625/J( R e )  is a suitable value. Ideally one would 
like Ay,  = Ax,, but unfortunately the Newton iteration employed did not converge for this 
configuration. The smallest value of Ay,  that could be used is 0.005, which is about 20Ax, at 
Re = 500. The probable reason for lack of convergence using small Ay,  is the creation of long, 
thin rectangles at large x. It was found that a suitable value for the upstream boundary is 
x = -4. Downstream, however, the flow changes only slowly and this boundary is set at 
x E 1000. The actual grid used for Re= 500 is shown in Figure 2. 

Differencing the equations 

becomes 
Replacing a$/ay and a$/ax  by u and - v  as in equations (2), the second of equations ( 5 )  

where A = Re uf’f g’ +f”/f’ and B = Re vg’/f’ + g”/g’. Replacing derivatives by the usual central 
differences 

the discretized equation corresponding to equation (8) is 

0 6  

0 5  

0 4  

- 0 2  -0 1 00 01 0 2  03 

Figure 2. The actual grid used for Re = 500 in (x, y) co-ordinates 
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The local truncation error is O ( R e h 2 )  and hence (10) is second-order accurate and is diagonally 
dominant provided the terms in square brackets remain positive, that is if hlAijI < 2  and hlBijI < 2. 
However, for large Re both A and B will be large and these conditions for dominance will be 
violated, with the consequence that if an SOR iteration is used to solve the system (lo), it will not 
converge. 

The Dennis-Hudson artificial viscosity 

the addition of an extra term to equation (8), namely 
In order to maintain diagonal dominance for all values of Re, Dennis and Hudson suggested 

Since this is proportional to h2,  the accuracy of the resulting difference scheme will still be second- 
order, and since the nature of the term is ‘viscous’, it is usually referred to as artificial or numerical 
viscosity. Differencing (11) using equations (9) and adding to (10) gives 

__ (1 + I h 2 A $ }  +?( 1 + l h 2 E : }  l i j  = 0. 1 1 
( S j )  

Diagonal dominance is maintained provided the terms in square brackets are positive, that is for 
A > & .  For robustness it is desirable to choose 1 a little away from and in practice 1 is set to $, 
although Bramley and Sloan choose A. In this paper we will set I to i. The local truncation error 
is now O ( R e 2 h 2 )  and, although technically second-order, will not be as accurate as (10) for large 
Re. Clearly, equations (12) include the case of no artificial viscosity by setting ,I = 0, thus reverting 
to equations (10). 

The system of equations to be solved 

The first of equations (5) is differenced as 

where a =f”/f’ and b = g ” / g .  By substituting this into (12) for each Ck.1 and using 

to replace uij and u i j ,  the only dependent variable in equations (12) will be $k,l. At a given location 
( i , j )  these +k,, will form the 13-point molecule as shown in Figure l(iii). To accommodate the 
boundary conditions, fictitious nodes are used as shown in Figure l(ii) and then the boundary 
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equations are 

$ i , M 2  = 1, $ i . ~ 2 + 1  = $i,MZ-, on CD, 

$ N z , j =  $ N ~ + l , j = y j ( ~ - ~ y f )  On DE, 

$ i ,  - 1 = - $i, 1 

$ - N l . j =  $ - N r - l . j = $ y i ( 3 - y ? )  On FA, 

$i ,o = 0, on EF, 

where Poiseuille flow has been assumed on boundaries DE and FA and their associated fictitious 
nodes. The fictitious node at C is defined in two different ways depending on whether the 
molecule is at (- 1, M ,  + l), which uses the second condition, or at (1, M , -  l), which uses the 
third. The system of equations from which a solution to the problem will be obtained is found by 
applying the 13-point molecule to each interior point and replacing $k,l on the boundary and in 
the fictitious nodes using (15). Hence the unknowns in these equations are the $ij at interior 
points only and consequently the number of unknowns equals the number of equations. We write 
this system of equations as 

F(Y) = 0, (16) 

where V T = ( y T ~ l + l ,  ( c I - N ~ + ~ ,  T . . ., yYN2-1) T with ~ 7 = ( $ i , ~ ,  + i , z , .  . ., +i ,M-l ) ,  where M = M ,  
for i < O  and M = M ,  for i > O .  Thus F and U) are vectors of length ( N ,  - 1) ( M ,  - 1)+ N , ( M , -  1). 

Newton's iteration 

Equation (16) is to be solved using Newton's method, which can be written as 

J = a F ( w ) ) / a y  (17) 

JAY'"' = - F(Y'"), s = o , 1 , 2 , . .  . ,  (18) 

(19) 'y (S+ 1) = \ y ( S )  + Alp('") 

where J is the Jacobian of the system and Yes) is the sth iterate. Each iteration consists of three 
steps, namely calculating the Jacobian (17), inverting the matrix equation (18) and updating the 
solution (19). 

It is more efficient to calculate the Jacobian algebraically. However, the use of transformation 
(7) in the equations made this prohibitively difficult and hence the elements of J are calculated 
dynamically via the formula 

, $ i j + E ,  . . . ) - F k t ( .  . . 

where E is a small quantity set to Equation (20) therefore calculates J to approximately six 
decimal places, which is sufficient for the Newton iteration to converge rapidly. JkI.ij = 0 except 
when Ik - i )  + 11 - j l  < 2, and hence for each row of J there are at most 13 non-zero elements. The 
form of the matrix J is shown in Figure 3. 

Equation (18) is solved by using Gaussian elimination. A code was written to take advantage of 
the special nature of the matrix J; that is, a banded matrix whose band width changes from 
4 M ,  - 3 to 4 M 2  - 3 after location ( N ,  - 1) ( M ,  - 1) + M 2  (see Figure 3). This greatly increases 
the efficiency of the program. The code was written with and without partial pivoting and was 



LAMINAR FLOW IN A CONSTRICTED CHANNEL 253 

\ \ 
\ \ 

\ 
L 4 4 - 3  \ 

\ 

Figure 3. The form of the Jacobian matrix J showing &he non-zero elements and the banded structure 

found to work perfectly well without pivoting. The main storage requirement of the program is 
the banded section of J (- 8 x lo5 locations for the largest array used), which can be stored in 
single precision since J is only accurate to this level. This, coupled with non-pivoting, enabled us 
to employ the array sizes cited in the Implementation section, which were the maximum allowable 
at the installation this work was carried out. 

Calculating J and its subsequent inversion is very time-consuming and it was found preferable 
to use a modification of Newton's method in which J is fixed after a few iterations. Thus for s > m 
equation (17) is replaced by 

J = dF(\Ycm')/JY, (21) 

which has already been calculated. Further, after forward elimination, the reduced form of J, 
which is upper triangular, is stored on and above the main diagonal of the matrix shown in 
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Figure 3, with the associated multipliers (used in the elimination process) stored below the 
diagonal. Hence it is only necessary to apply these multipliers to the right-hand side of (18) and 
then AY('") is obtainable by back-substitution in the usual way. For the largest array used the full 
iteration took - 95 s compared with ,.. 2 3  s for the fixed iteration on a VAX 8650. It was found 
that setting m = 1 (i.e. two full iterations) is adequate to give reasonably rapid convergence using 
the fixed iteration. Typically 10-1 5 fixed iterations were required for convergence. 

Woods' boundary condition and corner treatment 

In order to solve the system of equations using SOR iteration, it is necessary to know the 
vorticity r on the boundary. This is usually obtained using the Woods' boundary cond i t i~n .~  
Suppose the boundary in question is q = constant with and $o the values of $ next to and on 
the boundary; then using a Taylor expansion we can express in terms of e0 as 

Using the first of equations ( 5 )  to replace a2$/aq2 and then approximating a[/aq by (r0 - [ , ) / h  + O(h) and noting that gg = 0 if (7) is used, we have 

Neglecting the O ( h 2 )  term, (23) gives a value for r on the boundary which is second-order 
accurate and is the Woods' boundary condition modified by transformation (7). Truncating (22) 
after the hZ term gives the first-order-accurate estimate for [ on the boundary as 

(24) 
2 

L-0 = - ( $ 0 - $ 1 ) + 0 ( h ) .  (hs')2 
Neglecting the O( h)  term and using (1 3) to replace c0 in terms of the five-point molecule in $, we 
find that (24) is identical to the conditions stated in (1 5). It is well known that second-order 
accuracy is maintained even when a first-order boundary condition is employed. Hence condi- 
tions (1 5), which are second-order in $ but only first-order in C, will give second-order-accurate 
results in both $ and L-. However, for the sake of completeness, we will also consider the effect of 
the more accurate boundary condition given by (23). 

Another difficulty encountered when using an SOR iteration is how to deal with the infinite 
vorticity at the corner. Several techniques have been proposed to overcome of which we 
shall consider two. Firstly, the five-point molecule used to approximate the V2 operator is rotated 
through 45" at points near the corner in such a way that the value of the vorticity at the corner is 
never used. The second approach is to use a Moffatt expansion at the corner. One can show that 
close to the corner the right-hand side of the second of equations (1) can be neglected compared to 
the right-hand side. Moffatt's solution' can then be applied in the neighbourhood of the comer to 
estimate the vorticity. For a re-entrant angle of 270" this is 

[ = Ar-0~45552 cos(0.45552 e)+ ~ r - ~ . ~ ~ ~ ~ ~  sin(0.09147 e), (25) 
where r, 6 are the polar co-ordinates centred at the comer, with 8 measured from the line of 
symmetry, and A and B are constants. This difficulty is not encountered in Newton's method 
since equation (16) only contains $. However, it will be appreciated that $ has singular second 
derivatives at the corner which will affect the accuracy of the solution. 
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Implementation 

The system of equations is solved on grids having dimensions N ,  = M ,  = 48, N ,  = 80 and 
M 2  = M,/2 = 24 (denoted by 48 x 128). A suitable starting solution YcO)  for Newton’s iteration is 
obtained by a combination of continuation and grid refinement. Commencing on a 12 x 32 grid 
with Y ( O )  chosen to match most of the boundary conditions, a solution is found for zero Reynolds 
number. Then solutions are found for Reynolds numbers Re‘/6, r = 1,2, . . . ,6 ,  with the starting 
solution given by the solution for the previous Re. The solutions are obtained for 24 x 64 and 
48 x 128 grids using the starting solution given by the solution from the next coarsest grid, the 
values of intermediate points being obtained by cubic interpolation (linear interpolation is not 
accurate enough). In the continuation process a single iterate is sufficient to give a good starting 
solution for the next step. For the final three grids, iteration is continued until the largest element 
in A”(”) is less than lo-’ in magnitude. Thus for each case studied, results were obtained for three 
grids, namely 12 x 32,24 x 64 and 48 x 128. 

RESULTS AND DISCUSSION 

Without artijicial viscosity 

The flow diagrams for Re = 125,250,500,1000 and 2000 are shown in Figure 4, in which the 
artificial viscosity parameter R is set to zero. The error in the results can be estimated by 
comparing the results on the two finest grids (48 x 128 and 24 x 64) at common locations. Since 
the method is second-order, the error at location ( i , j )  is approximately 

where F/C refer to the result on the fine/coarse grid respectively, and these errors are given in 
Table I. Maximum errors in the streamfunction are in the range 10-3-10-2, with average errors a 
magnitude lower. These errors are quite large and are due entirely to the non-analytic nature of 
the solution at the corner (compare errors of - lov6 found by Bramley and Sloan using analytic 
functions4). The errors in velocity and vorticity are a magnitude higher in general, which is as 
expected since they are obtained by differencing the streamfunction. Interestingly, the stream- 
function maximum errors are proportional to Re, reflecting the O ( R e h 2 )  of the truncation error. 

The most interesting feature of the results is that the flow separates at the corner, forming a 
recirculation region downstream. This region is indicated by experiments but not found in the 
numerical calculations of Dennis and Smith, probably because the grid employed was not fine 
enough in this region. The separation first appears at Re = 250 and becomes larger in both length 
and strength as Re increases, the length being roughly proportional to Re. The separation 
streamline is not attached to the corner but slightly to the right. This has been observed 
experimentally and is confirmed theoretically by fitting of Moffatt expansion’ to the corner. The 
recirculation region in corner B is quantitatively similar to that found by Dennis and Smith. Sizes 
and strengths of both recirculation regions are shown in Table 11. A contour map of the 
vorticity at Re = 500 is given in Figure 5, clearly showing the singularity at the corner. 

With artificial viscosity 

The Dennis-Hudson difference scheme is programmed by setting the artificial viscosity 
parameter 1 to $. The code is less robust than when 1 = 0, and in fact did not converge for 
Re = lo00 and 2000. This is surprising since one would expect the addition of a ‘viscous’-like term 
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to have a stabilizing effect. As Re increases and the grid becomes finer, convergence becomes more 
and more difficult, and for Re > 500 no convergence is possible on the finest grid. The impression 
given is that for these high Reynolds numbers the underlying system of equations does not have a 
solution. 
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Figure 4. The streamlines of flow for Reynolds number (i) 125, (ii) 250, (iii) 500, (iv) 1000 and (v) 2000 

Table I. Errors (in units of lo3) in the results without artificial viscosity for various 
Reynolds numbers 

Velocity 
Stream function magnitude Vorticity 
(absolute errors) (average (absolute 

Reynolds absolute relative 
number Maximum Average error) error) 

125 
250 
500 

1000 
2000 

0 5 6  0.15 3.1 13.8 
1 99 0-19 3.1 19.8 
2.03 0.2 1 4.0 28.4 
4.10 0.4 1 6.2 38.6 
8.3 1 0.62 8.2 51.6 

For the three convergent cases (Re = 125,250 and 500) the results are characteristically similar 
to those for 1 = 0. Both recirculation regions are found which have dimensions and strengths to 
within N 15% of those given by the zero-artificial-viscosity case (see Table 11). In contrast, the 
accuracy of the results is less good. Table I11 shows that the overall error is at least a magnitude 
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Table 11. Dimensions and strengths of the two recirculation regions without artificial viscosity and with 
artificial viscosity (in parentheses). The last column gives the distance from the corner of the downstream 

recirculation region 

Upstream recirculation region Downstream recirculation region 

Distance 
Reynolds from 
number Length Width Maximum IL Length Width Maximum $ corner 

125 0.168 
( 0  1 64) 

250 0.227 
(0.209) 

500 0.308 
(0260) 

1000 0394 
2000 0507 

0.128 
(0.126) 
0.145 

(0.1 38) 
0.164 
(0.149) 
0.188 
0.214 

- - 1.00006 - 

(1.oooO6) 
1.00014 0.096 0.01 07 103021 0.023 

(1.00012) (0.106) (0.0114) (1.ooOo3) (0.018) 
1.00026 0.406 0.04 1 3 1-00132 0.008 

(1~00018) (0.406) (0.0466) (190152) (0.006) 
1.00053 0.956 0.0820 1.00779 0.005 
1~00080 2.039 0.1147 1.01562 O W 4  

- 

0.6 

0.5 

0.4 

-0 1 0 0  01 0 2  0 3  04 

Figure 5. Viscosity contours for Re = 500 showing the singularity at the origin 

higher than when 1 = 0. Furthermore, as found by Bramley and S l ~ a n , ~  the errors do not 
decrease as the grid size increases in a manner consistent with a second-order method. The ratio 
of the average errors from grids with sizes 48 x 128 and 24 x 64 should be 4. For 1 = 0 these are 
close to 4 but for 1 = they are considerably less than 4, indicating that the method is closer to a 
first-order method than a second-order one. The largest errors do not appear to be associated 
with the corner but occur downstream. These errors should therefore be regarded as a conse- 
quence of applying the Dennis-Hudson viscosity to a high-Reynolds-number flows. 

Woods' boundary condition and corner treatment 

For these special treatments used in SOR iterations, the average errors are shown in Table I11 
for the single case Re = 500. As expected, the Woods' boundary condition, being second-order, 
does not affect the overall accuracy of the result and the flow diagrams are in fact very similar. 
However, the use of molecule rotation or a Moffatt expansion (used to avoid using the infinite 
vorticity at the corner) gave much less accurate results and the order of the method no longer 
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Table 111. Average absolute error in the streamfunction of the standard results without 
artificial viscosity, results with the artificial viscosity constant 1 = & and special cases. The error 
ratio is that compared with the standard results and the order is the perceived order calculated 

from the ratio of the errors of the results on the two finest grids 

Reynolds Error 
number Error x lo4 ratio Order 

Standard program 

Dennis-Hudson 
artificial viscosity 

Woods’ boundary condition 
45“ molecule rotation 
Moffatt expansion 

2.02 
2.05 
2.09 

20.7 13.8 1.36 
40.1 20.6 1.28 
68.0 32.1 0.40 500 

500 3.3 1.6 2.30 
500 14.9 7.0 1.12 
500 22.8 10.8 1.52 

{ E; 

appears to be two. This is rather surprising since both have been used successfully in other 
contexts. The use of long, thin rectangles near the corner is the probable cause of these errors. 
Molecule rotation is unnatural unless the grid aspect ratio is 1, and Moffatt’s solution is 
determined by the vorticity at positions nearest the corner along the boundaries, which, having a 
long aspect ratio, could distort the solution. 

CONCLUSIONS 

Newton iteration can be successfully used to obtain the high-Reynolds-number flow in a stepped 
channel to reasonable accuracy considering the difficulties encountered by the corner. To avoid 
high-frequency error modes contaminating the solution, it is necessary to have a refined grid near 
the corner, which is affected by a suitable algebraic transformation of the independent variables. 
The code, both with and without artificial viscosity, successfully, predicts a secondary, down- 
stream recirculation region, observed in experiments but not found in previous calculations. This 
success is because the transformation enables the grid to be locally fine within the recirculation 
region. The Dennis-Hudson difference scheme, whilst giving the characteristics of the flow, is 
considerably less accurate than when artificial viscosity is excluded. 
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